发布于:2020-08-17 09:33:25
0函数是刻画变量之间的关系的常用模型,其中最为简单的是一次函数。什么是函数?他对应的图像有什么特点?用函数能解决现实生活中的那些问题?
你想了解这些吗?
让我们一起来走进函数世界吧!
当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?
摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.
在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式s=v²/300,其中v表示刹车前汽车的速度(单位:千米/时).
(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?
(2)给定一个v值,你都能求出相应的s值吗?
... ... ...
以上三个问题有什么共同点吗?
在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应地就确定了另一个变量(因变量)的值.
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.
在上面我们研究了三个问题,在这三个问题中有哪些共同点?又有哪些不同点?
相同点:都研究了两个变量,并且其中一个变量是另一个变量的函数.
不同点:在第一个问题中,是以图象的形式表示两个变量之间的关系,第二个问题中是以代数表达式的形式表示两个变量之间的关系,第三个问题是以表格的形式表示两个变量之间的关系.
... ... ...
常量与变量的概念:
常量:在某一变化过程中,始终保持不变的量.
变量:在某一变化过程中,可以取不同数值的量.
指出下列关系式中的变量与常量
(1)球的表面积S(cm²)与球半径R(cm)的关系式是S=4лR²
(2)以固定的速度V0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t(秒)之间的关系式是h=V0t-4.9t²
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
《函数的应用》指数函数、对数函数与幂函数PPT课件 第一部分内容:考点 指数、对数函数模型在实际问题中的应用 根据实际问题建立函数模型 学习目标 会利用已知函数模型解决实际问题 ..
《增长速度的比较》指数函数、对数函数与幂函数PPT课件 第一部分内容:学习目标 了解平均变化率描述增长速度的概念 了解在实际生活中不同增长规律的函数模型 ... ... ... 增长速度的..
PPT标签:
函数PPT课件